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1. The problem of piston expansion with constant velocity in an ideal gas 

has been solved by Sedov [l, 2 ] and also by Taylor [3 1. 

We assume that the expansion at constant velocity of a spherical, 

cylindrical or plane piston takes place in some ideal fluid. Sedov 12 1 
has demonstrated that the problem of transient motion in the medium 

between the piston and the shock wave originating herefrom remains a self- 

similar one whatever the internal energy of the medium. The latter can be 

expressed in the following general form: 

E(P, p) = +-r (2, 5) + corm 

In this expression p1 and p1 are the parameters which.determine the 

problem. When the piston expands at constant velocity, only the two para- 

meters, p1 and pi, of all the parameters of the problem, possess inde- 

pendent dimensions; the dimension of piston velocity is 

WI = [f%] 

Sedov has also shown 12 1 that if the internal energy of the medium 
t (p, p) is expressible as 

E (Pt PI = +lp(+-)+ const (1.1) 
where I$ is an arbitrary function of its argument, then the following re- 

lations are valid. 

1. The equation for the adiabatic curve is in this form; 

(1.2) 

where $ is some function of the entropy S which can be found from supple- 

mentary physical considerations, whilst the connection between functions 
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+(R) and 6(R) comes out of the formulas 

where C is an arbitrary constant. 

2. The equation of state, involving condition (l.l), should be 

T = exp s (B=fi) (l-4) 

where Cp is some function related to Y by the equation: 

Y'(S) = PlQ w (0 (1.5) 

The problem of a strong point explosion, under condition (l.l), has 
been discussed in 14 1. 

We will now study the problem of the piston expanding with constant 

velocity in an ideal medium with the assumption that the internal energy 

of the medium can be defined by formula (1.1). 

Bearing in mind the expression (1.2), the one-dimensional equations of 

transient motion in an ideal compressible fluid become 

(1.6) 

'Ihe condition at the piston surface r is: 

r=r.= Ut or v=u (I .7) 

where U is the velocity of the piston. 

Conditions on the shock wave which propagates through the undisturbed 

medium, incorporating assumption (1.11, can be written down thus 

- POD = ~2 (~2 - 4, pP + ~1 = pz (“2 -- D)? + ~2 (j-8) 

Suffix 1 denotes conditions in front of the shock wave, suffix 2 those 

behind it. D is the velocity of the shock wave. 
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From considerations of the similarity of the problem the required 

characteristics of the motion can be sought in this fonn 

where 

u = fV(A), p = p,R (V, P = p1-;;p (A) (1.9) 

r.2 = p t, 
* 

A. = % (1.10) 

In the above, r2 is the radius of the shock wave and A* is the di- 

mensionless piston radius. 

Using formulas (1.9) and (1.10) we make equations (1.6) non-dimens- 

ional; 

(~-q__&_Ldp_ = 
R dInh 

V-2-V+ 2;. 

__!&.+(I-V$.+V,Ii 

d~l*-&)=-2 

(1.11) 

(1.12) 

(1.13) 

Integrating (1.13) and making use of the second expression in (1.3) 

we arrive at the integral expressing degree of nadiabaticityW. 

’ = );‘,f(R) -exp 1. dR W W 
(1.14) 

Using expression (1.14), after some rearrangement we bring equations 

(1.11) and (1.12) into the following form; 

((1 - V)“- [P + q RV (V - 1)] --- [A - p' (R)]} y = 

= -~(1-~)v(v-l)~ (1.15), 

(1 -v,.+ = VV $+1 (1.16) 

By reason of (1.2) and the second of the expressions (1.3) we arrive 

at the following expression for the square of the velocity of sound 

Introducing the dimensionless function 

(1.17) 

P 1 
w =.- 

II 
--q’(R)] 

v(R) Ra (1.18) 
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we transform the system of equations (1.15), (1.16) and (1.14) into the 

following 

_ (v-1)(1-v dlnR 
VW - (I- V)Z 

(1.19) 

(1.20) 

(1.21) 

Converting the shock conditions (1.8) to nondimensionals with the help 

of formulas (1.9) and (l.lO), and making use of (1.18), we find the 

quantities R,, w2, w1 in the function of V2 

wp = - VP [(I - V212 - TJ’ (R2)l IV2 + 29 (111 
29 w {(P ma) - v2 - ‘p (1)) ’ 

zL’l = [I - 9 (I)1 _ v2 wz - 29 VW 
R2 = gq (1.22) 

%!(I) {(P(R2)-VYz-q7q- 

In view of (1.7) and (1.9), the condition at the piston in dimension- 

less form can be written 

V=l (1.23) 

'Thus, for the case when the internal energy of the fluid is in the 

form (l.l), the problem reduces to integrating the system of equations 

(1.19) and (1.20) so as to find the two functions w and R, which satisfy 

the boundary conditions (1.22) and (1.23). 

Having determined w and R, we can find X in its final form from equa- 

tion (1.21). The arbitrary constant C in (1.21) is so determined that 

when R = R,, X is unity. 

Now let us deal with the case v f 1, Equations (1.20) and (1.19) show 

that for equation (1.19) to be studied qualitatively and integrated in- 

dependently of (1.20), it is sufficient for the following equation to be 

valid: 

1 --[‘--~~(~)]+~(ln~[~--~‘(R)])=~~ cpW Ra 
(1.24) 

where x is an arbitrary constant. In this case R does not enter the R.H.S. 

of equation (1.19) and is determined from (1.20) by quadrature. & inte- 

grating equation (1.24) we find 



Expansion of a piston in vater 127 

cp(R) = 
KX+kH+b(x-I) 

(X-l)H(hX-6) 
(1.25) 

JJere k and b are arbitrary constants. 

Because of the second of expressions (1.3), the equation of the adi- 

abatic curve becomes 

p = Y(S) (Rx- b) 

The temperature T can be found from equation (1.4) 

(1.26) 

2. It is well known from experience that at very high pressures (of 

the order of ten to one hundred thousand atmospheres) water, like other 

liquids, is no longer incompressible [ 5,6 I. 

lhere is no generally accepted equation of state for water. Some 
authors [ 7,8 1 claim that the adiabatic water equation is: 

p = y (3) (P” - P”“) 

in which the value of constant K is close to 7. 

(2.1) 

beriments on the density and temperature of water at high pressures 

IS,6 1 reveal that at constant density the pressure is a linear function 

of the temperature. Thus in equation (1.4) we get 0 as a linear function 

of its argument. Using (1.4), (1.5) and (1.3) we find the adiabatic equa- 

tion, the equation of state and an expression for the internal energy of 

water 

p = [B + eAP1@-‘*)] (RX- b) (b=( fg) 
P’__A w+~~+~(~---1)1 - 

(X-1)K -- 
B 

I 

cpw = 
HX + kH + b (x - 1) 

(x-l)H(RX--b) 

(2.2) 

(2.3) 

(2.4) 

In these expressions K > 1, b, A, B, k are constants determined from 

experiment. 

On comparing (2.2) with (1.26) and (2.4) with (1.25) we see that under 
conditions (1.24), equations (1.19)-(1.21) and boundary conditions (1.22) 

and (1.23) describe the motion of water displaced by a piston expanding 

with constant velocity. Using condition (1.24), we transform equations 
(1.19)-(1.21) into 
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dw 2w [w-(V-1)(1V-l)] - =.- 
dV V [YW - (1 - vp) 

din A_ - [w - (1 - V)Z] 

dV v [VW - (1 - V)2] 

(2.5) 

(2.6) 

R = Cl (WA7 lKX-l) (2.7) 

where C, is an arbitrary constant; 1 denotes 

I=1 +++1)(x-q 

From (1.18) and (2.4) we find 

(2.8) 

XPIP+’ 
w=- 

H”--b 
(2.9) 

If.the constants b and k in equations (1.25) and (1.26) are zero, we 

are reduced to the problem of an expanding piston in gas with adiabatic 

index K. Ihe whole field of integral curves of equation (2.5) has been 

studied in detail and the corresponding problems have been completely 

solved by Sedov [ 1,2 I. As a result of the foregoing, however, it appears 
that equations (2.5)-(2.7) h ave the same form for water as for gas (only 
with the difference that for water w is given by (2.9) whilst with gas 

b = 0, i.e. w = KP/R in this formula). It therefore follows that the 
field of integral curves of equation (2.5) will have the same appearance 

as in the case of gas [ 1 1 . Singular points of this equation are: 

nodes: 0 (O,O), A (O,l), C (1,O) 

saddle points: B (p, w’), D ( 2 ~0, m ) 

and 

Ihe parabola w = (V - 1)2 corresponds to a weak explosion; thus it is 

not possible to proceed from the point where V = 1, corresponding to the 

piston, to the point 0 (O,O), which corresponds to the point at infinity 
in space, in a continuous manner along an integral curve; it -is only _ 
possible to get there by means of a jump. 

We can get the solution thus: from point V = 1, w = w* (where w* is 
some given constant) we move along the integral curve to point (V?, w,) 
from which we reach point (0, w,) of axis w, by a junp corresponding to 
the outer edge of the shock. We then move along the integral straight 
line V = 0 to point 0. ‘Ihus for each given value of w1 we get its asso- 

ciated integral curve. 
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In view of the fact that points (1, to*) corresponding to the piston 

are ordinary points, parameter h acquires at this point some constant 

value less than unity (assuming that X = 1 on the shock wave). 

Because of (1.18) and (1.25), the conditions 

ing expressions of R2# ‘02 and wi in terms of V2 

R,=1 
1 - vz 

(1.22) yield the follow- 

(2.10) 

x(x-1) 
wz=-- 

V% (1 - Vz) IV2 + 29 (111 
2 {[i--(X - i)q(f)l [I ---(l -vV2)X]--vn) 

(2.21) 

WI-- q&j 
{-- 2 + (x _t 1) Vz + B (1~ V# - (x - I) b (1 - Y2)“+“) 

{[I - (x - 1) ‘p (I)1 11 - (1 - V*)“l - XV81 
(2.12) 

where 

B = Z-(x-- I)[2(1 - b)q,(l)-61 

Assming that X = 1 on the shock wave, we find from (2.7) 
1 -- 

c 1 = R2w2 x--l 

(2.13) 
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Moreover, P is linked with w and R in conformity with 

P= _L w flZx -b) 

x Rx-’ 
(2.14) 

We thus have the system of four equations (2.51, (2.6), (2.7) and 
(2.14) for determining R, P, V and 10 as functions of A. 

Lo - 
a6 R? a3 as 10 

Fig. 2. 

'Ihe chief difficulty in solving this system lies in the numerical in- 
tegration of equation (2.5) with boundary conditions (2.11) and (1.23). 
log h can be found by quadrature from equation (2.6) after determining 
w(V). R and P can be found from equations (2.7) and (2.14) respectively. 

Equations (2.5)-(2.81, (2.141, (1.9) and (1.10) reveal that with a 
plane piston, moving inside a cylindrical tube full of water, a region 
of constant velocity, constant density and constant pressure is created 
between the piston and the shock wave. 

Fig. 1 shows graphs of functions p,/p,, p,/pI and D/al, dimensionless 
pressure and density on the piston and the dimensionless shock wave velo- 
city, respectively as a function of the dimensionless piston velocity 

U/al. Figs. 2 and 3 give graphs of v/v2# p/p2 and p/p2 as functions of h 
for various values of parameter woi. Fig. 2 relates to the case of spherical 
synmetry, Fig. 3 to cylindrical syrnnetry. 
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Fig. 3. 

The curves are as follows: 

curve 1 is for W1 = 0.66538 
I 2 " 0.37742 
I 3 w 0.16720 
. 4 w 0.09126 
0 5 'I 0.01362 
9 6 m 0 

'lhe constants entering equations (2.2)-(2.4) were obtained from experi- 
mental results. 

3. Sedov [1,2 1 gave the solution to the problem of the implosion of 
ideal gas at a point, and its dispersion outwards. 'lhese solutions are 
given by the integral curves (2.51, where I = y P/R; It is clear from the 
foregoing that the sme integral curves can be used for water. 

At the initial instant the velocity, density, and pressure, of all the 
particles of water are equal. 
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If the initial velocity is directed towards the centre, i.e. it is 
negative (focussed), water, moving from infinity towards the centre under- 
goes, first of all, an adiabatic compression, then through the shock, it 
changes to a state of rest. 

If the initial particle velocity is directed outwards (dispersion), 
for small values of the ratio of initial water velocity to initial velo- 
city of sound vl' = vl/al, there is a nucleus of water which is coming to 
rest and is expanding in time, and this is separated by the weak shock 
wave from water moving outwards to infinity. 

For some particular value of the quantity vl'-= vi‘* there is con- 

tinuous motion, reaching the centre of symnetry. when vt* > vIO* a hollow 
region expands at constant velocity, at the boundary of which the density 
is zero. 

'lhe water case differs from that of gas in that for vl' > vi'* there 
is negative pressure at the centre of symmetry or at the boundary of the 
hollow space. Ihe surface at which the pressure becomes zero propagates 
with the particles and cannot, therefore, be regarded as a boundary of 
the hollow space. 

Note that for water, as well as for gas, there is an exact solution 
to equations (2-S)-(2.7) ( corresponding to singular point B) 

2 r - 
v= Zfv(x--1) t 

where a1 is the sonic velocity in the undisturbed fluid. 

a; = XPI v(x---f)a 
p~(1--~)' w* = [2+v(x--~)l~ ’ 

AL& 
1 

Here Cl is the constant entering equation (2.7). 

At the centre of symnetry the pressure is negative, the density and 
the velocity become zero, whilst at infinite distance these quantities 
become infinitely great. 

lhe authors are indebted to L;I, Sedov for his guidance in this work. 
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